
Finite Automata
• Two types – both describe what are called regular

languages
– Deterministic (DFA) – There is a fixed number of states and weDeterministic (DFA) There is a fixed number of states and we

can only be in one state at a time
– Nondeterministic (NFA) –There is a fixed number of states but we

can be in multiple states at one time
• While NFA’s are more expressive than DFA’s, we will see

that adding nondeterminism does not let us define any
language that cannot be defined by a DFA. a guage a ca o be de ed by a .

• One way to think of this is we might write a program using
a NFA, but then when it is “compiled” we turn the NFA
into an equivalent DFAinto an equivalent DFA.

Informal Example

• Customer shopping at a store with an electronic
transaction with the bank
– The customer may pay the e-money or cancel the e-

money at any time.
The store may hi goods and d the electronic– The store may ship goods and redeem the electronic
money with the bank.

– The bank may transfer any redeemed money to a y f y y
different party, say the store.

• Can model this problem with three automata

Bank Automata
Actions in bold are initiated by the entity.
Otherwise, the actions are initiated by someone else and received by the specified automata

a b d fStart
pay redeem transfer

ship ship ship

c e g
redeem transfer

ship ship ship

Store

Cancel

Pay

2

Cancel

1 3 4

Cancel

Redeem Transfer

Start

Customer
Start

Bank

Ignoring Actions
• The automata only describes actions of interest

– To be more precise, with a DFA (deterministic finite automaton)
we should specify arcs for all possible inputs. p y p p

– E.g., what should the customer automaton do if it receives a
“redeem”?

– What should the bank do if it is in state 2 and receives a “redeem”?
• The typical behavior if we receive an unspecified action is

for the automaton to die.
– The automaton enters no state at all, and further action by theThe automaton enters no state at all, and further action by the

automaton would be ignored.
– The best method though is to specify a state for all behaviors, as

indicated as follows for the bank automaton.

Complete Bank Automaton
Redeem, Transfer,
Pay, Ship, Cancel

2

Cancel

Redeem, Pay,
Ship, Cancel

Redeem, Transfer,
Pay, Ship, Cancel

1 3 4
Redeem Transfer

Transfer, Pay,
Ship

Start

BankBank

Ignores other actions that may be received

Entire System as Automaton
• When there are multiple automata for a system, it is useful to

incorporate all of the automata into a single one so that we can better
understand the interaction.

• Called the product automaton The product automaton creates a new• Called the product automaton. The product automaton creates a new
state for all possible states of each automaton.

• Since the customer automaton only has one state, we only need to
consider the pair of states between the bank and the store.
– For example, we start in state (a,1) where the store is in its start state, and

the bank is in its start state. From there we can move to states (a,2) if the
bank receives a cancel, or state (b,1) if the store receives a pay.

• To construct the product automaton, we run the bank and store
“i ll l” i ll ibl i d i dautomaton “in parallel” using all possible inputs and creating an edge

on the product automaton to the corresponding set of states.

Product Automaton

a b c d e f g

1

start

P S
1

2

C C C

S
R

2

3

P

R S
3

4
T

T

S
4

Product Automaton
• How is this useful? It can help validate our protocol.
• It tells us that not all states are reachable from the start

state.
– For example, we should never be in state (g,1) where we have

shipped and transferred cash, but the bank is still waiting for a
redeem.

It ll t if t ti l• It allows us to see if potential errors can occur.
– We can reach state (c, 2). This is problematic because it allows a

product to be shipped but the money has not been transferred to the
store.

– In contrast, we can see that if we reach state (d, 3) or (e, 3) then the
store should be okay – a transfer from the bank must occur

• assuming the bank automaton doesn’t “die” which is why it is useful
to add arcs for all possible inputs to complete the automatonto add arcs for all possible inputs to complete the automaton

Simple Example – 1 way door

• As an example, consider a
one-way automatic door.
This door has two padsThis door has two pads
that can sense when
someone is standing on Front Rearthem, a front and rear pad.
We want people to walk
through the front and

Front
Pad

Rear
Pad

g
toward the rear, but not
allow someone to walk the
other direction:other direction:

One Way Door
• Let’s assign the following codes to our different input cases:

a - Nobody on either pad
b - Person on front padp
c - Person on rear pad
d - Person on front and rear pad

• We can design the following automaton so that the door doesn’t openWe can design the following automaton so that the door doesn t open
if someone is still on the rear pad and hit them:

ba,c,d b,c,d

C OStart

a

Formal Definition of a FiniteFormal Definition of a Finite
Automaton

1. Finite set of states, typically Q.
2. Alphabet of input symbols, typically ∑
3. One state is the start/initial state, typically q0 // q0 ∈ Q
4. Zero or more final/accepting states; the set is typically F. // F ⊆ Q
5. A transition function, typically δ. This function

• Takes a state and input symbol as arguments.
• Returns a state• Returns a state.
• One “rule” would be written δ(q, a) = p, where q and p are states, and a is

an input symbol.
• Intuitively: if the FA is in state q, and input a is received, then the FA

goes to state p (note: q = p OK)goes to state p (note: q = p OK).
6. A FA is represented as the five-tuple: A = (Q, ∑, δ,q0, F). Here, F is a

set of accepting states.

One Way Door – Formal Notation
Using our formal notation, we have:
 Q = {C, O} (usually we’ll use q0 and q1 instead)
 F = {} There is no final state

hi i h q0 = C This is the start state
 ∑ = {a,b,c,d}
 The transition function, δ , can be specified by the table:

 a b c c
 C C O C C Write each δ(state,symbol)?

 O C O O O

The start state is indicated with the
If there are final accepting states, that is indicated with a * in the proper row.

Formal Definition of Computation
• Let M = (Q, ∑, δ,q0, F) be a finite

automaton and let w = w1w2…wn be a string 1 2 n g
where each wi is a member of alphabet ∑.

• M accepts w if a sequence of states r0r1…rnp q 0 1 n
in Q exists with three conditions:

1. r0 = q0
2. δ(ri, wi+1) = ri+1 for i=0, … , n-1
3. rn ∈ F

We say that M recognizes language A if A = {w | M accepts w }

In other words, the language is all of those strings that are accepted
by the finite automata.

DFA Example
• Here is a DFA for the

language that is the set
of all strings of 0’s Start

1

of all strings of 0 s
and 1’s whose
numbers of 0’s and 1’s

q0 q1

Start

1numbers of 0 s and 1 s
are both even:

1

1

0 0 0 0

q3q2

1

Aside: Type Errors

• A major source of confusion when dealing with
automata (or mathematics in general) is making
“type errors "“type errors."

• Don't confuse A, a FA, i.e., a program, with L(A),
which is of type “set of strings."which is of type set of strings.

• The start state q0 is of type “state," but the
accepting states F is of type “set of states."

• a could be a symbol or a could be a string of
length 1 depending on the context

DFA Example

• The following figure below is a marble-rolling
toy. A marble is dropped at A or B. Levers x1, x2,
and x cause the marble to fall either to the left orand x3 cause the marble to fall either to the left or
to the right. Whenever a marble encounters a
lever, it causes the lever to reverse after the marble ,
passes, so the next marble will take the opposite
branch.
M d l thi b fi it t t L t• Model this game by a finite automaton. Let
acceptance correspond to the marble exiting at D.
Non-acceptance represents a marble exiting at C.p p g C

Marble Rolling Game

A B

x1 x3

x2

C DC D

Marble Game Notation
• The inputs and outputs (A-D) become the alphabet of the automaton,

while the levers indicate the possible states.
• If we define the initial status of each lever to be a 0, then if the levers

change direction they are in state 1change direction they are in state 1.
• Let’s use the format x1x2x3 to indicate a state. The initial state is 000.

If we drop a marble down B, then the state becomes to 011 and the
marble exits at C.

• Since we have three levers that can take on binary values, we have 8
possible states for levers, 000 to 111.

• Further identify the states by appending an “a” for acceptance, or “r”
for rejection. o ejec o .

• This leads to a total of 16 possible states. All we need to do is start
from the initial state and draw out the new states we are led to as we
get inputs from A or B.

Messy Marble DFA

000rStart 011r
B

010a
B

A

To 010r

100r

A

111rB
A

110a
B

A

100aB

To 010r
To 111rA
B

010r

A

001aBA
B A

101rA

B A B

110r

A

000a 101a

B
B B

A
BA

Marble DFA – Table Format

• Easier to see in table
format. Note that not

 A B
->000r 100r 011r
*000a 100r 011r

all states are
accessible.

000a 100r 011r
*001a 101r 000a

010r 110r 001a
*010a 110r 001a

011r 111r 010a
100r 010r 111r

*100a 010r 111r
101r 011r 100a

*101a 011r 100a
110r 000a 101a

*110a 000a 101a
111r 001a 110a

Regular Operations

• Brief intro here – will cover more on regular
expressions shortly

• In arithmetic, we have arithmetic operations
– + * / etc.

• For finite automata, we have regular operations
– Union
– Concatenation
– Star

Algebra for Languages
1. The union of two languages L and M is the set of strings

that are in both L and M.
• Example: if L = { 0, 1} and M = {111} then L ∪ M is {0, 1,Example: if L { 0, 1} and M {111} then L ∪ M is {0, 1,

111}.
2. The concatenation of languages L and M is the set of

strings that can be formed by taking any string in L andstrings that can be formed by taking any string in L and
concatenating it with any string in M. Concatenation is
denoted by LM although sometimes we’ll use L•M
(pronounced “dot”)(pronounced dot).

• Example, if L = {0, 1} and M = {ε, 010} then LM is { 0, 1,
0010, 1010}.

Algebra for Languagesg g g
3. The closure, star, or Kleene star of a language L is denoted L* and represents

the set of strings that can be formed by taking any number of strings from L
with repetition and concatenating them. It is a unary operator.p g y p

More specifically, L0 is the set we can make selecting zero strings from L. L0 is
always { ε }.

L1 is the language consisting of selecting one string from L.
L2 is the language consisting of concatenations selecting two strings from L.
…

0 1 2L* is the union of L0, L1, L2, … L∞

For example, if L = {0 , 10} then
L0 = { ε }.
L1 = {0, 10 }
L2 = {00, 010, 100, 1010}
L3 = {000, 0010, 0100, 01010, 10010, 1000, 10100, 101010}

and L* is the union of all these sets up to infinity… and L is the union of all these sets, up to infinity.

Closure Properties of RegularClosure Properties of Regular
Languages

• Closure refers to some operation on a language, resulting
in a new language that is of the same “type” as those
originally operated on
– i.e., regular in our case

• We won’t be using the closure properties extensively here;
consequently we will state the theorems and give some

l S th b k f f f th thexamples. See the book for proofs of the theorems.
• The regular languages are closed under union,

concatenation, and *. I.e., if A1 and A2 are regular
l thlanguages then
– A1 ∪ A2 is also regular
– A1A2 is also regular

A * is also regular Later we’ll see easy ways– A1 is also regular y y
to prove the theorems

Nondeterministic Finite AutomataNondeterministic Finite Automata

• A NFA (nondeterministic finite automata) is able to be in ()
several states at once.
– In a DFA, we can only take a transition to a single deterministic state
– In a NFA we can accept multiple destination states for the same input.
– You can think of this as the NFA “guesses” something about its input

and will always follow the proper path if that can lead to an accepting
state.

– Another way to think of the NFA is that it travels all possible paths andAnother way to think of the NFA is that it travels all possible paths, and
so it remains in many states at once. As long as at least one of the
paths results in an accepting state, the NFA accepts the input.

• NFA is a useful tool
– More expressive than a DFA.
– BUT we will see that it is not more powerful! For any NFA we can

construct a corresponding DFA
Another way to think of this is the DFA is how an NFA would actually– Another way to think of this is the DFA is how an NFA would actually
be implemented (e.g. on a traditional computer)

NFA Example
0 1

• This NFA accepts
only those strings that q0Start q1 q2

0 1

0,1

end in 01
q0 q1 q2

q0q0

• Running in “parallel
threads” for string
1100101

q0

q0

q0

1

1

0

q1 - stuck

q0

q0

q0

1

1

0

q1 - stuck1100101 q0

q0

0

q1 stuck

q0

1

0

q1

q2 - stuck

q0

q0

0

q1 stuck

q0

1

0

q1

q2 - stuck

q0
1

0

q0

q1

q2 - accept

q0
1

0

q0

q1

q2 - accept

Formal Definition of an NFA

• Similar to a DFA

1. Finite set of states, typically Q.
2. Alphabet of input symbols, typically ∑
3. One state is the start/initial state, typically q0
4. Zero or more final/accepting states; the set is typically F.
5. A transition function, typically δ . This function:

• Takes a state and input symbol as arguments.
• Returns a set of states instead of a single state as a DFA• Returns a set of states instead of a single state, as a DFA

6. A FA is represented as the five-tuple: A = (Q, ∑,δ ,q0, F). Here, F is a set of accepting
states.

Previous NFA in Formal Notation

The previous NFA could be specified formally as:

({q0 q1 q2} {0 1} δ q0 {q2})({q0,q1,q2}, {0,1}, δ, q0, {q2})

The transition table is:

 0 1
 q0 {q0,q1} {q0}
 q1 Ø {q2}
 q2 Ø Ø*

Formal Definition of an NFA

• Same idea as the DFA
L N (Q ∑ δ F) b NFA d l• Let N = (Q, ∑, δ,q0, F) be an NFA and let w =
w1w2…wn be a string where each wi is a member
of alphabet ∑.of alphabet ∑.

• N accepts w if a sequence of states r0r1…rn in Q
exists with three conditions:

1. r0 = q0
2. ri+1 ∈ δ(ri, wi+1) for i=0, … , n-1
3 r ∈ F3. rn ∈ F

Observe that δ(ri, wi+1) is the set of allowable next states

We say that N recognizes language A if A = {w | N accepts w }

Equivalence of DFA’s and NFA’s

• For most languages, NFA’s are easier to construct than
DFA’s

• But it turns out we can build a corresponding DFA for any• But it turns out we can build a corresponding DFA for any
NFA
– The downside is there may be up to 2n states in turning a NFA into a

DFA However for most problems the number of states isDFA. However, for most problems the number of states is
approximately equivalent.

• Theorem: A language L is accepted by some DFA if and
only if L is accepted by some NFA; i e : L(DFA) = L(NFA)only if L is accepted by some NFA; i.e. : L(DFA) L(NFA)
for an appropriately constructed DFA from an NFA.
– Informal Proof: It is trivial to turn a DFA into an NFA (a DFA is

already an NFA without nondeterminism) The following slides willalready an NFA without nondeterminism). The following slides will
show how to construct a DFA from an NFA.

NFA to DFA : Subset Construction

Let an NFA N be defined as N = (QN, ∑,δ N,q0, FN).
The equivalent DFA D = (QD, ∑,δD , {q0 }, FD) where:

1. QD = 2Qn
 ; i.e. QD is the set of all subsets of QN; that is, it is the power set of QN.

Often, not all of these states are accessible from the start state; these states may be
“thrown away.”

2 F i th t f b t S f Q h th t S F Ø Th t i F i ll t f N’2. FD is the set of subsets S of QN such that S ∩ FN ≠ Ø. That is, FD is all sets of N’s
states that include at least one accepting state of N.

3. For each set S ⊆ QN and for each input symbol a in ∑:
U apaS =)()(δδ U

Sp
ND apaS

∈

=),(),(δδ

That is, to compute δD(S, a) we look at all the states p in S, see , p D(,) p ,
what states N goes to starting from p on input a, and take the union
of all those states.

Subset Construction Example (1)Subset Construction Example (1)
0,1

• Consider the NFA:
q0Start q1 q2

0 1

The power set of these
states is: { Ø {q } {q }

0 1

Ø Ø Østates is: { Ø, {q0}, {q1},
{q2}, {q0, q1}, {q0, q2},{q1,
q2}, {q0, q1, q2} }

Ø Ø Ø

{q0} {q0, q1} {q0}

{q1} Ø {q2}

*{ } Ø Ø

New transition function
with all of these states and

*{q2} Ø Ø

{q0, q1} {q0, q1} {q0, q2}

*{q0, q2} {q0, q1} {q0}

go to the set of possible
inputs:

*{q1, q2} Ø {q2}

*{q0, q1,
q2}

{q0, q1} {q0, q2}

Subset Construction (2)
• Many states may be unreachable from our start state. A good way to

construct the equivalent DFA from an NFA is to start with the start
states and construct new states on the fly as we reach them.

 0 1
Ø Ø Ø

{q } {q q } {q } {q0} {q0, q1} {q0}
{q0, q1} {q0, q1} {q0, q2}
*{q0, q2} {q0, q1} {q0}

Graphically: 0 1

1
0

Graphically: {q0}Start {q0, q1} {q0,q2}
0

01

NFA to DFA Exercises
a

• Convert the following
NFA’s to DFA’s

q0Start q1
a,b

b

15 possible states on
this second one (mightthis second one (might
be easier to represent in
table format)

Corollary

• A language is regular if and only if some
nondeterministic finite automaton
recognizes it

• A language is regular if and only if someA language is regular if and only if some
deterministic finite automaton recognizes it

Epsilon Transitions
• Extension to NFA – a “feature” called epsilon

transitions, denoted by ε, the empty string
• The ε transition lets us spontaneously take a• The ε transition lets us spontaneously take a

transition, without receiving an input symbol
• Another mechanism that allows our NFA to be in

l i lmultiple states at once.
– Whenever we take an ε edge, we must fork off a new

“thread” for the NFA starting in the destination state. g
• While sometimes convenient, has no more power

than a normal NFA
Just as a NFA has no more power than a DFA– Just as a NFA has no more power than a DFA

Formal Notation – EpsilonFormal Notation Epsilon
Transition

• Transition function δ is now a function that
takes as arguments:g
– A state in Q and
– A member of ∑ ∪ {ε}; that is, an input symbolA member of ∑ ∪ {ε}; that is, an input symbol

or the symbol ε. We require that ε not be a
symbol of the alphabet ∑ to avoid any
confusion.

Epsilon NFA Example

qStart r s
ε1

0

qStart r s

ε0

1

In this ε-NFA, the string “001” is accepted by the path qsrqrs,
where the first qs matches 0, sr matches ε, rq matches 0, qr
matches 1 and then rs matches ε In other words the acceptedmatches 1, and then rs matches ε. In other words, the accepted
string is 0ε0ε1ε.

Epsilon Closure
• Epsilon closure of a state is simply the set

of all states we can reach by following theof all states we can reach by following the
transition function from the given state that
are labeled εare labeled ε.

0
Example:

qStart r s
ε1

ε0

• ε-closure(q) = { q }

1

ε closure(q) { q }
• ε-closure(r) = { r, s}

Eliminating Epsilon Transitionsg p
To eliminate ε-transitions, use the following to convert to a DFA:

1. Compute ε-closure for the current state, resulting in a set of states S.
2. δD(S,a) is computed for all a in Σ by

a. Let S = {p1, p2, … pk}
k

b. Compute U
k

i
i ap

1

),(
=

δ and call this set {r1, r2, r3 … rm} This set is achieved

by following input a, not by following any ε-transitions
m

c. Add the ε-transitions in by computing U
m

i
irclosureaS

1

)(),(
=

−= εδ

3. Make a state an accepting state if it includes any final states in the ε-NFA.

In simple terms: Just like converting a regular NFA to a DFA
except follow the epsilon transitions whenever possible afterexcept follow the epsilon transitions whenever possible after
processing an input

Epsilon Elimination Example
0

qStart r s
ε1

0

ε0

1

0,1

Converts to:

qStart sr
,

0 10,1

